Back to Search Start Over

Studies on the metabolic fate of n-3 polyunsaturated fatty acids

Authors :
Sacha Ferdinandusse
Simone Denis
Georges Dacremont
Ronald J.A. Wanders
Source :
Journal of Lipid Research, Vol 44, Iss 10, Pp 1992-1997 (2003)
Publication Year :
2003
Publisher :
Elsevier, 2003.

Abstract

Several different processes involved in the metabolic fate of docosahexaenoic acid (DHA, C22:6n-3) and its precursor in the biosynthesis route, C24:6n-3, were studied. In cultured skin fibroblasts, the oxidation rate of [1-14C] 24:6n-3 was 2.7 times higher than for [1-14C]22:6n-3, whereas [1-14C]22:6n-3 was incorporated 7 times faster into different lipid classes than was [1-14C]24:6n-3. When determining the peroxisomal acyl-CoA oxidase activity, similar specific activities for C22:6(n-3)-CoA and C24:6(n-3)-CoA were found in mouse kidney peroxisomes. Thioesterase activity was measured for both substrates in mouse kidney peroxisomes as well as mitochondria, and C22:6(n-3)-CoA was hydrolyzed 1.7 times faster than C24:6(n-3)-CoA.These results imply that the preferred metabolic fate of C24:6(n-3)-CoA, after its synthesis in the endoplasmic reticulum (ER), is to move to the peroxisome, where it is β-oxidized, producing C22:6(n-3)-CoA. This DHA-CoA then preferentially moves back, probably as free fatty acid, to the ER, where it is incorporated into membrane lipids.

Details

Language :
English
ISSN :
00222275
Volume :
44
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Journal of Lipid Research
Publication Type :
Academic Journal
Accession number :
edsdoj.72feac83440e4547ae31e41fe90e0637
Document Type :
article
Full Text :
https://doi.org/10.1194/jlr.M300223-JLR200