Back to Search Start Over

Directional Topography Influences Adipose Mesenchymal Stromal Cell Plasticity: Prospects for Tissue Engineering and Fibrosis

Authors :
Gabriel Romero Liguori
Qihui Zhou
Tácia Tavares Aquinas Liguori
Guilherme Garcia Barros
Philipp Till Kühn
Luiz Felipe Pinho Moreira
Patrick van Rijn
Martin C. Harmsen
Source :
Stem Cells International, Vol 2019 (2019)
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

Introduction. Progenitor cells cultured on biomaterials with optimal physical-topographical properties respond with alignment and differentiation. Stromal cells from connective tissue can adversely differentiate to profibrotic myofibroblasts or favorably to smooth muscle cells (SMC). We hypothesized that myogenic differentiation of adipose tissue-derived stromal cells (ASC) depends on gradient directional topographic features. Methods. Polydimethylsiloxane (PDMS) samples with nanometer and micrometer directional topography gradients (wavelength w=464-10, 990 nm; amplitude a=49-3, 425 nm) were fabricated. ASC were cultured on patterned PDMS and stimulated with TGF-β1 to induce myogenic differentiation. Cellular alignment and adhesion were assessed by immunofluorescence microscopy after 24 h. After seven days, myogenic differentiation was examined by immunofluorescence microscopy, gene expression, and immunoblotting. Results. Cell alignment occurred on topographies larger than w=1758 nm/a=630 nm. The number and total area of focal adhesions per cell were reduced on topographies from w=562 nm/a=96 nm to w=3919 nm/a=1430 nm. Focal adhesion alignment was increased on topographies larger than w=731 nm/a=146 nm. Less myogenic differentiation of ASC occurred on topographies smaller than w=784 nm/a=209 nm. Conclusion. ASC adherence, alignment, and differentiation are directed by topographical cues. Our evidence highlights a minimal topographic environment required to facilitate the development of aligned and differentiated cell layers from ASC. These data suggest that nanotopography may be a novel tool for inhibiting fibrosis.

Subjects

Subjects :
Internal medicine
RC31-1245

Details

Language :
English
ISSN :
1687966X and 16879678
Volume :
2019
Database :
Directory of Open Access Journals
Journal :
Stem Cells International
Publication Type :
Academic Journal
Accession number :
edsdoj.7312687779474916b590730126656212
Document Type :
article
Full Text :
https://doi.org/10.1155/2019/5387850