Back to Search Start Over

Developing an optimal stratification model for colorectal cancer screening and reducing racial disparities in multi-center population-based studies

Authors :
Jianbo Tian
Ming Zhang
Fuwei Zhang
Kai Gao
Zequn Lu
Yimin Cai
Can Chen
Caibo Ning
Yanmin Li
Sangni Qian
Hao Bai
Yizhuo Liu
Heng Zhang
Shuoni Chen
Xiangpan Li
Yongchang Wei
Bin Li
Ying Zhu
Jinhua Yang
Mingjuan Jin
Xiaoping Miao
Kun Chen
Source :
Genome Medicine, Vol 16, Iss 1, Pp 1-22 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Early detection of colorectal neoplasms can reduce the colorectal cancer (CRC) burden by timely intervention for high-risk individuals. However, effective risk prediction models are lacking for personalized CRC early screening in East Asian (EAS) population. We aimed to develop, validate, and optimize a comprehensive risk prediction model across all stages of the dynamic adenoma-carcinoma sequence in EAS population. Methods To develop precision risk-stratification and intervention strategies, we developed three trans-ancestry PRSs targeting colorectal neoplasms: (1) using 148 previously identified CRC risk loci (PRS148); (2) SNPs selection from large-scale meta-analysis data by clumping and thresholding (PRS183); (3) PRS-CSx, a Bayesian approach for genome-wide risk prediction (PRSGenomewide). Then, the performance of each PRS was assessed and validated in two independent cross-sectional screening sets, including 4600 patients with advanced colorectal neoplasm, 4495 patients with non-advanced adenoma, and 21,199 normal individuals from the ZJCRC (Zhejiang colorectal cancer set; EAS) and PLCO (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; European, EUR) studies. The optimal PRS was further incorporated with lifestyle factors to stratify individual risk and ultimately tested in the PLCO and UK Biobank prospective cohorts, totaling 350,013 participants. Results Three trans-ancestry PRSs achieved moderately improved predictive performance in EAS compared to EUR populations. Remarkably, the PRSs effectively facilitated a thorough risk assessment across all stages of the dynamic adenoma-carcinoma sequence. Among these models, PRS183 demonstrated the optimal discriminatory ability in both EAS and EUR validation datasets, particularly for individuals at risk of colorectal neoplasms. Using two large-scale and independent prospective cohorts, we further confirmed a significant dose–response effect of PRS183 on incident colorectal neoplasms. Incorporating PRS183 with lifestyle factors into a comprehensive strategy improves risk stratification and discriminatory accuracy compared to using PRS or lifestyle factors separately. This comprehensive risk-stratified model shows potential in addressing missed diagnoses in screening tests (best NPV = 0.93), while moderately reducing unnecessary screening (best PPV = 0.32). Conclusions Our comprehensive risk-stratified model in population-based CRC screening trials represents a promising advancement in personalized risk assessment, facilitating tailored CRC screening in the EAS population. This approach enhances the transferability of PRSs across ancestries and thereby helps address health disparity. Graphical Abstract

Details

Language :
English
ISSN :
1756994X
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Genome Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.73a67aa80a8747438a677fa1b7715541
Document Type :
article
Full Text :
https://doi.org/10.1186/s13073-024-01355-y