Back to Search Start Over

Optogenetic Neuronal Stimulation Promotes Functional Recovery After Spinal Cord Injury

Authors :
Wei-wei Deng
Guang-yan Wu
Ling-xia Min
Zhou Feng
Hui Chen
Ming-liang Tan
Jian-feng Sui
Hong-liang Liu
Jing-ming Hou
Source :
Frontiers in Neuroscience, Vol 15 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Although spinal cord injury (SCI) is the main cause of disability worldwide, there is still no definite and effective treatment method for this condition. Our previous clinical trials confirmed that the increased excitability of the motor cortex was related to the functional prognosis of patients with SCI. However, it remains unclear which cell types in the motor cortex lead to the later functional recovery. Herein, we applied optogenetic technology to selectively activate glutamate neurons in the primary motor cortex and explore whether activation of glutamate neurons in the primary motor cortex can promote functional recovery after SCI in rats and the preliminary neural mechanisms involved. Our results showed that the activation of glutamate neurons in the motor cortex could significantly improve the motor function scores in rats, effectively shorten the incubation period of motor evoked potentials and increase motor potentials’ amplitude. In addition, hematoxylin-eosin staining and nerve fiber staining at the injured site showed that accurate activation of the primary motor cortex could effectively promote tissue recovery and neurofilament growth (GAP-43, NF) at the injured site of the spinal cord, while the content of some growth-related proteins (BDNF, NGF) at the injured site increased. These results suggested that selective activation of glutamate neurons in the primary motor cortex can promote functional recovery after SCI and may be of great significance for understanding the neural cell mechanism underlying functional recovery induced by motor cortex stimulation.

Details

Language :
English
ISSN :
1662453X
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.73a9695edb9149b19186d05fd68cd711
Document Type :
article
Full Text :
https://doi.org/10.3389/fnins.2021.640255