Back to Search Start Over

Boundary value problems for strongly nonlinear equations under a Wintner-Nagumo growth condition

Authors :
Cristina Marcelli
Francesca Papalini
Source :
Boundary Value Problems, Vol 2017, Iss 1, Pp 1-15 (2017)
Publication Year :
2017
Publisher :
SpringerOpen, 2017.

Abstract

Abstract We study the following strongly nonlinear differential equation: ( a ( t , x ( t ) ) Φ ( x ′ ( t ) ) ) ′ = f ( t , x ( t ) , x ′ ( t ) ) , a.e. in [ 0 , T ] $$\bigl(a \bigl(t,x(t) \bigr)\Phi\bigl(x'(t) \bigr) \bigr)'= f \bigl(t,x(t),x'(t) \bigr), \quad\text{a.e. in } [0,T] $$ subjected to various boundary conditions including, as particular cases, the classical Dirichlet, periodic, Neumann and Sturm-Liouville problems. We adopt the method of lower and upper solutions requiring a weak form of a Wintner-Nagumo growth condition.

Details

Language :
English
ISSN :
16872770
Volume :
2017
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Boundary Value Problems
Publication Type :
Academic Journal
Accession number :
edsdoj.740b58b800654abfb91faa285562f92b
Document Type :
article
Full Text :
https://doi.org/10.1186/s13661-017-0913-7