Back to Search
Start Over
Boundary value problems for strongly nonlinear equations under a Wintner-Nagumo growth condition
- Source :
- Boundary Value Problems, Vol 2017, Iss 1, Pp 1-15 (2017)
- Publication Year :
- 2017
- Publisher :
- SpringerOpen, 2017.
-
Abstract
- Abstract We study the following strongly nonlinear differential equation: ( a ( t , x ( t ) ) Φ ( x ′ ( t ) ) ) ′ = f ( t , x ( t ) , x ′ ( t ) ) , a.e. in [ 0 , T ] $$\bigl(a \bigl(t,x(t) \bigr)\Phi\bigl(x'(t) \bigr) \bigr)'= f \bigl(t,x(t),x'(t) \bigr), \quad\text{a.e. in } [0,T] $$ subjected to various boundary conditions including, as particular cases, the classical Dirichlet, periodic, Neumann and Sturm-Liouville problems. We adopt the method of lower and upper solutions requiring a weak form of a Wintner-Nagumo growth condition.
Details
- Language :
- English
- ISSN :
- 16872770
- Volume :
- 2017
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Boundary Value Problems
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.740b58b800654abfb91faa285562f92b
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s13661-017-0913-7