Back to Search
Start Over
Hybridization of Integrated Microwave and Mechanical Power Harvester
- Source :
- IEEE Access, Vol 6, Pp 13921-13930 (2018)
- Publication Year :
- 2018
- Publisher :
- IEEE, 2018.
-
Abstract
- An integrated ambient kinetic and microwave energy scavenger is presented in connection with its strategy of two-level hybridization, namely structural and functional integration of the two dissimilar energy harvesting techniques. Specifically, they are related to two-resonator/transducer integration and simultaneous/collaborative rectification. An F-shaped radiofrequency antenna serves as the microwave energy collector and a Michael Faraday's generator mounted on a mechanical beam cut out of the printed circuit board acts as the electrical current producer. Both microwave and mechanical resonators are optimally designed and accommodated on the same substrate with a compact size comparable to that of a credit card (80 mm × 50 mm). The demonstrated hybrid power harvester has a capacity to operate properly with either microwave or mechanical excitation. When both power sources are accessible, it can provide a notable efficiency enhancement compared with the separate harvesting of two single sources. The measurements show that at a typical injecting AC power of -38 dBm, the rectified DC output power could be increased by at least 50% compared with a direct summation of DC output power through two separate modes. An efficiency enhancement of 85% can be achieved when diode's injecting power sources are -45 dBm. With a strong resilience, such a hybrid power harvester is able to potentially find its wide practical applications.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.748d58ac4a1645c2b35cd74d10db7742
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2018.2814003