Back to Search Start Over

Quantum critical thermal transport in the unitary Fermi gas

Authors :
Bernhard Frank
Wilhelm Zwerger
Tilman Enss
Source :
Physical Review Research, Vol 2, Iss 2, p 023301 (2020)
Publication Year :
2020
Publisher :
American Physical Society, 2020.

Abstract

Strongly correlated systems are often associated with an underlying quantum critical point which governs their behavior in the finite-temperature phase diagram. Their thermodynamical and transport properties arise from critical fluctuations and follow universal scaling laws. Here, we develop a microscopic theory of thermal transport in the quantum critical regime expressed in terms of a thermal sum rule and an effective scattering time. We explicitly compute the characteristic scaling functions in a quantum critical model system, the unitary Fermi gas. Moreover, we derive an exact thermal sum rule for heat and energy currents and evaluate it numerically using the nonperturbative Luttinger-Ward approach. For the thermal scattering times we find a simple quantum critical scaling form. Together, the sum rule and the scattering time determine the heat conductivity, thermal diffusivity, Prandtl number, and sound diffusivity from high temperatures down into the quantum critical regime. The results provide a quantitative description of recent sound attenuation measurements in ultracold Fermi gases.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
26431564
Volume :
2
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Physical Review Research
Publication Type :
Academic Journal
Accession number :
edsdoj.74dab66c5a02430595c01342cea79746
Document Type :
article
Full Text :
https://doi.org/10.1103/PhysRevResearch.2.023301