Back to Search
Start Over
Separating, purifying and decoding elastic waves by mimicking a cochlea on a thin plate
- Source :
- Communications Physics, Vol 7, Iss 1, Pp 1-8 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract A human cochlea is capable of continuously separating and amplifying sound of different frequencies to specific positions from 20 to 20,000 Hz, which makes it a high-resolution living sensor. The realization of cochlea-like structure for elastic waves in solids offers a highly desirable functionality on high throughput mechanical energy harvesting and sensing, but remains a challenging topic owing to narrow band and intricate configuration. Here we propose and demonstrate a generic framework of elastic cochlea on a thin plate, enabled by a pair of compact metafence layers. It is experimentally realized to harvest and separate flexural waves in quite a wide frequency range from 5.8 to 21.8 kHz, together with a continuous energy amplification exceeding one magnitude order. An enhanced mode, characterized by a near zero group velocity at a tailored cutoff width, is uncovered to illustrate the filtering and amplification physics. Moreover, complex information demultiplexing and undistorted decoding are further realized by harnessing the high-Q signal sensing and purification. The proposed prototype may stimulate substantial applications on information processing, non-destructive evaluation and other wave regulation scenarios.
- Subjects :
- Astrophysics
QB460-466
Physics
QC1-999
Subjects
Details
- Language :
- English
- ISSN :
- 23993650
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.751fc9ffc1849238452c2f3f176da0f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42005-024-01818-z