Back to Search Start Over

Association of TLR 9 gene polymorphisms with remission in patients with rheumatoid arthritis receiving TNF-α inhibitors and development of machine learning models

Authors :
Woorim Kim
Tae Hyeok Kim
Soo Jin Oh
Hyun Jeong Kim
Joo Hee Kim
Hyoun-Ah Kim
Ju-Yang Jung
In Ah Choi
Kyung Eun Lee
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract Toll-like receptor (TLR)-4 and TLR9 are known to play important roles in the immune system, and several studies have shown their association with the development of rheumatoid arthritis (RA) and regulation of tumor necrosis factor alpha (TNF-α). However, studies that investigate the association between TLR4 or TLR9 gene polymorphisms and remission of the disease in RA patients taking TNF-α inhibitors have yet to be conducted. In this context, this study was designed to investigate the effects of polymorphisms in TLR4 and TLR9 on response to TNF-α inhibitors and to train various models using machine learning approaches to predict remission. A total of six single nucleotide polymorphisms (SNPs) were investigated. Logistic regression analysis was used to investigate the association between genetic polymorphisms and response to treatment. Various machine learning methods were utilized for prediction of remission. After adjusting for covariates, the rate of remission of T-allele carriers of TLR9 rs352139 was about 5 times that of the CC-genotype carriers (95% confidence interval (CI) 1.325–19.231, p = 0.018). Among machine learning algorithms, multivariate logistic regression and elastic net showed the best prediction with the area under the receiver-operating curve (AUROC) value of 0.71 (95% CI 0.597–0.823 for both models). This study showed an association between a TLR9 polymorphism (rs352139) and treatment response in RA patients receiving TNF-α inhibitors. Moreover, this study utilized various machine learning methods for prediction, among which the elastic net provided the best model for remission prediction.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.7559b981ef1d4163b160fee455ec9fe0
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-99625-x