Back to Search Start Over

Streptococcus agalactiae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) elicits multiple cytokines from human cells and has a minor effect on bacterial persistence in the murine female reproductive tract

Authors :
Matthew J. Sullivan
Kelvin G. K. Goh
Ruby Thapa
Debasish Chattopadhyay
Deepak S. Ipe
Benjamin L. Duell
Lahiru Katupitiya
Dean Gosling
Dhruba Acharya
Glen C. Ulett
Source :
Virulence, Vol 12, Iss 1, Pp 3015-3027 (2021)
Publication Year :
2021
Publisher :
Taylor & Francis Group, 2021.

Abstract

Streptococcus agalactiae glyceraldehyde 3-phosphate dehydrogenase (GAPDH), encoded by gapC, is a glycolytic enzyme that is associated with virulence and immune-mediated protection. However, the role of GAPDH in cellular cytokine responses to S. agalactiae, bacterial phagocytosis and colonization of the female reproductive tract, a central host niche, is unknown. We expressed and studied purified recombinant GAPDH (rGAPDH) of S. agalactiae in cytokine elicitation assays with human monocyte-derived macrophage, epithelial cell, and polymorphonuclear leukocyte (PMN) co-culture infection models. We also generated a S. agalactiae mutant that over-expresses GAPDH (oeGAPDH) from gapC using a constitutively active promoter, and analyzed the mutant in murine macrophage antibiotic protection assays and in virulence assays in vivo, using a colonization model that is based on experimental infection of the reproductive tract in female mice. Human cell co-cultures produced interleukin (IL)-1β, IL-6, macrophage inflammatory protein (MIP)-1, tumor necrosis factor (TNF)-α and IL-10 within 24 h of exposure to rGAPDH. PMNs were required for several of these cytokine responses. However, over-expression of GAPDH in S. agalactiae did not significantly affect measures of phagocytic uptake compared to an empty vector control. In contrast, oeGAPDH-S. agalactiae showed a small but statistically significant attenuation for persistence in the reproductive tract of female mice during the chronic phase of infection (10–28 days post-inoculation), relative to the vector control. We conclude that S. agalactiae GAPDH elicits production of multiple cytokines from human cells, and over-expression of GAPDH renders the bacterium more susceptible to host clearance in the female reproductive tract. One-sentence summary: This study shows Streptococcus agalactiae glyceraldehyde 3-phosphate dehydrogenase, an enzyme that functions in glycolysis, gluconeogenesis and virulence, modifies phagocytosis outcomes, including cytokine synthesis, and affects bacterial persistence in the female reproductive tract.

Details

Language :
English
ISSN :
21505594 and 21505608
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Virulence
Publication Type :
Academic Journal
Accession number :
edsdoj.75affdcbde0645aa8fa80d903f557a0a
Document Type :
article
Full Text :
https://doi.org/10.1080/21505594.2021.1989252