Back to Search Start Over

Detection and evaluation of parameters influencing the identification of heterozygous-enriched regions in Holstein cattle based on SNP chip or whole-genome sequence data

Authors :
Henrique A. Mulim
Victor B. Pedrosa
Luis Fernando Batista Pinto
Francesco Tiezzi
Christian Maltecca
Flavio S. Schenkel
Luiz F. Brito
Source :
BMC Genomics, Vol 25, Iss 1, Pp 1-18 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background A heterozygous-enriched region (HER) is a genomic region with high variability generated by factors such as balancing selection, introgression, and admixture processes. In this study, we evaluated the genomic background of HERs and the impact of different parameters (i.e., minimum number of SNPs in a HER, maximum distance between two consecutive SNPs, minimum length of a HER, maximum number of homozygous allowed in a HER) and scenarios [i.e., different SNP panel densities and whole-genome sequence (WGS)] on the detection of HERs. We also compared HERs characterized in Holstein cattle with those identified in Angus, Jersey, and Norwegian Red cattle using WGS data. Results The parameters used for the identification of HERs significantly impact their detection. The maximum distance between two consecutive SNPs did not impact HERs detection as the same average of HERs (269.31 ± 787.00) was observed across scenarios. However, the minimum number of markers, maximum homozygous markers allowed inside a HER, and the minimum length size impacted HERs detection. For the minimum length size, the 10 Kb scenario showed the highest average number of HERs (1,364.69 ± 1,483.64). The number of HERs decreased as the minimum number of markers increased (621.31 ± 1,271.83 to 6.08 ± 21.94), and an opposite pattern was observed for the maximum homozygous markers allowed inside a HER (54.47 ± 195.51 to 494.89 ± 1,169.35). Forty-five HER islands located in 23 chromosomes with high Tajima’s D values and differential among the observed and estimated heterozygosity were detected in all evaluated scenarios, indicating their ability to potentially detect regions under balancing selection. In total, 3,440 markers and 28 genes previously related to fertility (e.g., TP63, ZSCAN23, NEK5, ARHGAP44), immunity (e.g., TP63, IGC, ARHGAP44), residual feed intake (e.g., MAYO9A), stress sensitivity (e.g., SERPINA6), and milk fat percentage (e.g., NOL4) were identified. When comparing HER islands among breeds, there were substantial overlaps between Holstein with Angus (95.3%), Jersey (94.3%), and Norwegian Red cattle (97.1%), indicating conserved HER across taurine breeds. Conclusions The detection of HERs varied according to the parameters used, but some HERs were consistently identified across all scenarios. Heterozygous genotypes observed across generations and breeds appear to be conserved in HERs. The results presented could serve as a guide for defining HERs detection parameters and further investigating their biological roles in future studies.

Details

Language :
English
ISSN :
14712164
Volume :
25
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.763bec12ee8d438492ffcd9313a63109
Document Type :
article
Full Text :
https://doi.org/10.1186/s12864-024-10642-2