Back to Search
Start Over
Exploring the Mechanism of Chuanxiong Rhizoma against Thrombosis Based on Network Pharmacology, Molecular Docking and Experimental Verification
- Source :
- Molecules, Vol 28, Iss 18, p 6702 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Chuanxiong rhizoma (CX) has been utilized for centuries as a traditional herb to treat blood stasis syndromes. However, the pharmacological mechanisms are still not completely revealed. This research was aimed at exploring the molecular mechanisms of CX treatment for thrombosis. Network pharmacology was used to predict the potential anti-thrombosis mechanism after correlating the targets of active components with targets of thrombosis. Furthermore, we verified the mechanism of using CX to treat thrombosis via molecular docking and in vitro experiments. Network pharmacology results showed that a total of 18 active ingredients and 65 targets of CX treatment for thrombosis were collected, including 8 core compounds and 6 core targets. We revealed for the first time that tissue factor (TF) had a close relationship with most core targets of CX in the treatment of thrombosis. TF is a primary coagulation factor in physiological hemostasis and pathological thrombosis. Furthermore, core components of CX have strong affinity for core targets and TF according to molecular docking analysis. The in vitro experiments indicated that Ligustilide (LIG), the representative component of CX, could inhibit TF procoagulant activity, TF mRNA and protein over-expression in a dose-dependent manner in EA.hy926 cells through the PI3K/Akt/NF-κB signaling pathway. This work demonstrated that hemostasis or blood coagulation was one of the important biological processes in the treatment of thrombosis with CX, and TF also might be a central target of CX when used for treating thrombosis. The inhibition of TF might be a novel mechanism of CX in the treatment of thrombosis.
Details
- Language :
- English
- ISSN :
- 28186702 and 14203049
- Volume :
- 28
- Issue :
- 18
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7643a253eac24933ba72e6a42e769200
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules28186702