Back to Search Start Over

Tailoring d-band center of high-valent metal-oxo species for pollutant removal via complete polymerization

Authors :
Hong-Zhi Liu
Xiao-Xuan Shu
Mingjie Huang
Bing-Bing Wu
Jie-Jie Chen
Xi-Sheng Wang
Hui-Lin Li
Han-Qing Yu
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Polymerization-driven removal of pollutants in advanced oxidation processes (AOPs) offers a sustainable way for the simultaneous achievement of contamination abatement and resource recovery, supporting a low-carbon water purification approach. However, regulating such a process remains a great challenge due to the insufficient microscopic understanding of electronic structure-dependent reaction mechanisms. Herein, this work probes the origin of catalytic pollutant polymerization using a series of transition metal (Cu, Ni, Co, and Fe) single-atom catalysts and identifies the d-band center of active site as the key driver for polymerization transfer of pollutants. The high-valent metal-oxo species, produced via peroxymonosulfate activation, are found to trigger the pollutant removal via polymerization transfer. Phenoxyl radicals, identified by the innovative spin-trapping and quenching approaches, act as the key intermediate in the polymerization reactions. More importantly, the oxidation capacity of high-valent metal-oxo species can be facilely tuned by regulating their binding strength for peroxymonosulfate through d-band center modulation. A 100% polymerization transfer ratio is achieved by lowering the d-band center. This work presents a paradigm to dynamically modulate the electronic structure of high-valent metal-oxo species and optimize pollutant removal from wastewater via polymerization.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.78817344922940eba30f91f33a5339a9
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-46739-1