Back to Search Start Over

Mining the microbiota to identify gut commensals modulating neuroinflammation in a mouse model of multiple sclerosis

Authors :
Paola Bianchimano
Graham J. Britton
David S. Wallach
Emma M. Smith
Laura M. Cox
Shirong Liu
Kacper Iwanowski
Howard L. Weiner
Jeremiah J. Faith
Jose C. Clemente
Stephanie K. Tankou
Source :
Microbiome, Vol 10, Iss 1, Pp 1-22 (2022)
Publication Year :
2022
Publisher :
BMC, 2022.

Abstract

Abstract Background The gut microbiome plays an important role in autoimmunity including multiple sclerosis and its mouse model called experimental autoimmune encephalomyelitis (EAE). Prior studies have demonstrated that the multiple sclerosis gut microbiota can contribute to disease, hence making it a potential therapeutic target. In addition, antibiotic treatment has been shown to ameliorate disease in the EAE mouse model of multiple sclerosis. Yet, to this date, the mechanisms mediating these antibiotic effects are not understood. Furthermore, there is no consensus on the gut-derived bacterial strains that drive neuroinflammation in multiple sclerosis. Results Here, we characterized the gut microbiome of untreated and vancomycin-treated EAE mice over time to identify bacteria with neuroimmunomodulatory potential. We observed alterations in the gut microbiota composition following EAE induction. We found that vancomycin treatment ameliorates EAE, and that this protective effect is mediated via the microbiota. Notably, we observed increased abundance of bacteria known to be strong inducers of regulatory T cells, including members of Clostridium clusters XIVa and XVIII in vancomycin-treated mice during the presymptomatic phase of EAE, as well as at disease peak. We identified 50 bacterial taxa that correlate with EAE severity. Interestingly, several of these taxa exist in the human gut, and some of them have been implicated in multiple sclerosis including Anaerotruncus colihominis, a butyrate producer, which had a positive correlation with disease severity. We found that Anaerotruncus colihominis ameliorates EAE, and this is associated with induction of RORĪ³t+ regulatory T cells in the mesenteric lymph nodes. Conclusions We identified vancomycin as a potent modulator of the gut-brain axis by promoting the proliferation of bacterial species that induce regulatory T cells. In addition, our findings reveal 50 gut commensals as regulator of the gut-brain axis that can be used to further characterize pathogenic and beneficial host-microbiota interactions in multiple sclerosis patients. Our findings suggest that elevated Anaerotruncus colihominis in multiple sclerosis patients may represent a protective mechanism associated with recovery from the disease. Video Abstract

Subjects

Subjects :
Microbial ecology
QR100-130

Details

Language :
English
ISSN :
20492618
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microbiome
Publication Type :
Academic Journal
Accession number :
edsdoj.789a055f20764362b6a206a407712ee1
Document Type :
article
Full Text :
https://doi.org/10.1186/s40168-022-01364-2