Back to Search Start Over

An Online Monitoring System for In Situ and Real-Time Analyzing of Inclusions within the Molten Metal

Authors :
Yunfei Wu
Hao Yan
Jiahao Wang
Xianzhao Na
Xiaodong Wang
Jincan Zheng
Source :
Sensors, Vol 24, Iss 9, p 2767 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Traditional methods for assessing the cleanliness of liquid metal are characterized by prolonged detection times, delays, and susceptibility to variations in sampling conditions. To address these limitations, an online cleanliness-analyzing system grounded in the method of the electrical sensing zone has been developed. This system facilitates real-time, in situ, and quantitative analysis of inclusion size and amount in liquid metal. Comprising pneumatic, embedded, and host computer modules, the system supports the continuous, online evaluation of metal cleanliness across various metallurgical processes in high-temperature environments. Tests conducted with gallium liquid at 90 °C and aluminum melt at 800 °C have validated the system’s ability to precisely and quantitatively detect inclusions in molten metal in real time. The detection procedure is stable and reliable, offering immediate data feedback that effectively captures fluctuations in inclusion amount, thereby meeting the metallurgical industry’s demand for real-time analyzing and control of inclusion cleanliness in liquid metal. Additionally, the system was used to analyze inclusion size distribution during the hot-dip galvanizing process. At a zinc melt temperature of 500 °C, it achieved a detection limit of 21 μm, simultaneously providing real-time data on the size and amount distribution of inclusions. This represents a novel strategy for the online monitoring and quality control of zinc slag throughout the hot-dip galvanizing process.

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.7988943703041cb84bcfe5080b23451
Document Type :
article
Full Text :
https://doi.org/10.3390/s24092767