Back to Search Start Over

Chirality-assisted enhancement of tripartite entanglement in waveguide QED

Authors :
Logan Patrick
Umar Arshad
Dingyu Guo
Imran Mirza
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract We study the generation and control of genuine tripartite entanglement among quantum emitters (QEs) that are side-coupled to one-dimensional spin-momentum locked (or chiral) waveguides. By applying the machinery of Fock state master equations along with the recently proposed concurrence fill measure of tripartite entanglement [S. Xie and J. H. Eberly, Phys. Rev. Lett. 127, 040403 (2021)], we analyze how three-photon Gaussian wavepackets can distribute entanglement among two and three QEs. We show that with a five times larger waveguide decay rate in the right direction as compared to the left direction, the maximum value of tripartite entanglement can be elevated by $$35\%$$ 35 % as compared to the symmetric scenario where both left, and right direction decay rates are equal. Additionally, chirality can maintain the tripartite entanglement for longer than the corresponding symmetric decay rate. Finally, we study the influence of detunings and spontaneous emission on the resulting entanglement. We envision quantum networking and long-distance quantum communication as two main areas of applications of this work.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.79eb498c6ca74de0afd3940cb53975e7
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-61043-0