Back to Search Start Over

The Milk Thistle (Silybum marianum) Compound Silibinin Inhibits Cardiomyogenesis of Embryonic Stem Cells by Interfering with Angiotensin II Signaling

The Milk Thistle (Silybum marianum) Compound Silibinin Inhibits Cardiomyogenesis of Embryonic Stem Cells by Interfering with Angiotensin II Signaling

Authors :
Enas Hussein Ali
Fatemeh Sharifpanah
Amer Taha
Suk Ying Tsang
Maria Wartenberg
Heinrich Sauer
Source :
Stem Cells International, Vol 2018 (2018)
Publication Year :
2018
Publisher :
Hindawi Limited, 2018.

Abstract

The milk thistle (Silybum marianum (L.) Gaertn.) compound silibinin may be an inhibitor of the angiotensin II type 1 (AT1) receptor which is expressed in differentiating embryonic stem (ES) cells and is involved in the regulation of cardiomyogenesis. In the present study, it was demonstrated that silibinin treatment decreased the number of spontaneously contracting cardiac foci and cardiac cell areas differentiated from ES cells as well as contraction frequency and frequency of calcium (Ca2+) spiking. In contrast, angiotensin II (Ang II) treatment stimulated cardiomyogenesis as well as contraction and Ca2+ spiking frequency, which were abolished in the presence of silibinin. Intracellular Ca2+ transients elicited by Ang II in rat smooth muscle cells were not impaired upon silibinin treatment, excluding the possibility that the compound acted on the AT1 receptor. Ang II treatment activated extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) pathways in embryoid bodies which were abolished upon silibinin pretreatment. In summary, our data suggest that silibinin inhibits cardiomyogenesis of ES cells by interfering with Ang II signaling downstream of the AT1 receptor.

Subjects

Subjects :
Internal medicine
RC31-1245

Details

Language :
English
ISSN :
1687966X and 16879678
Volume :
2018
Database :
Directory of Open Access Journals
Journal :
Stem Cells International
Publication Type :
Academic Journal
Accession number :
edsdoj.7abcb12dcd284bcaa7e55eab4c009b3c
Document Type :
article
Full Text :
https://doi.org/10.1155/2018/9215792