Back to Search
Start Over
Fe-S dually modulated adsorbate evolution and lattice oxygen compatible mechanism for water oxidation
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Simultaneously activating metal and lattice oxygen sites to construct a compatible multi-mechanism catalysis is expected for the oxygen evolution reaction (OER) by providing highly available active sites and mediate catalytic activity/stability, but significant challenges remain. Herein, Fe and S dually modulated NiFe oxyhydroxide (R-NiFeOOH@SO4) is conceived by complete reconstruction of NiMoO4·xH2O@Fe,S during OER, and achieves compatible adsorbate evolution mechanism and lattice oxygen oxidation mechanism with simultaneously optimized metal/oxygen sites, as substantiated by in situ spectroscopy/mass spectrometry and chemical probe. Further theoretical analyses reveal that Fe promotes the OER kinetics under adsorbate evolution mechanism, while S excites the lattice oxygen activity under lattice oxygen oxidation mechanism, featuring upshifted O 2p band centers, enlarged d-d Coulomb interaction, weakened metal-oxygen bond and optimized intermediate adsorption free energy. Benefiting from the compatible multi-mechanism, R-NiFeOOH@SO4 only requires overpotentials of 251 ± 5/291 ± 1 mV to drive current densities of 100/500 mA cm−2 in alkaline media, with robust stability for over 300 h. This work provides insights in understanding the OER mechanism to better design high-performance OER catalysts.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7acdfb556684ce381882cfe77c5c810
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-52682-y