Back to Search Start Over

CFD Based Investigation on the Hydroplaning Mechanism of a Cormorant’s Webbed Foot Propulsion

Authors :
Jinguo Huang
Tianmiao Wang
Tim C. Lueth
Jianhong Liang
Xingbang Yang
Source :
IEEE Access, Vol 8, Pp 31551-31561 (2020)
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

Aquatic unmanned aerial vehicles (AquaUAV) have aroused much attention from researchers, though no fully-featured aerial-aquatic UAV exists so far. The assistance of webbed foot hydroplaning can accomplish rapid take-off of a cormorant. A significant impact force and moment can be generated due to the webbed foot propulsion in the water-to-air transition. However, the change law of force and moment experienced by the cormorant during take-off has not been captured. Based on previous achievements in the biological investigation, we developed a biomimetic prototype with curve fitting model and parameter optimization to attain specific movements to imitate cormorant's hydroplaning strategy. The bionic webbed foot considers the elastic mechanics, and the forepart is regarded as flexible material for fluid-structure interaction (FSI). Dynamic process of rapid take-off in the aspects of flow characteristics and mechanical properties can be estimated by computational fluid dynamics (CFD) in our proposed FSI model, which establishes a foundation for further applications in the design of the assisted propulsion system of aerial-aquatic UAV.

Details

Language :
English
ISSN :
21693536
Volume :
8
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.7aff78af5a4244e7903b2f3d1c6d5a9b
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2020.2973356