Back to Search Start Over

Silencing P2X7R Alleviates Diabetic Neuropathic Pain Involving TRPV1 via PKCε/P38MAPK/NF-κB Signaling Pathway in Rats

Authors :
Lisha Chen
Hongji Wang
Juping Xing
Xiangchao Shi
Huan Huang
Jiabao Huang
Changshui Xu
Source :
International Journal of Molecular Sciences, Vol 23, Iss 22, p 14141 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Transient receptor potential vanillic acid 1 (TRPV1) is an ion channel activated by heat and inflammatory factors involved in the development of various types of pain. The P2X7 receptor is in the P2X family and is associated with pain mediated by satellite glial cells. There might be some connection between the P2X7 receptor and TRPV1 in neuropathic pain in diabetic rats. A type 2 diabetic neuropathic pain rat model was induced using high glucose and high-fat diet for 4 weeks and low-dose streptozocin (35 mg/kg) intraperitoneal injection to destroy islet B cells. Male Sprague Dawley rats were administrated by intrathecal injection of P2X7 shRNA and p38 inhibitor, and we recorded abnormal mechanical and thermal pain and nociceptive hyperalgesia. One week later, the dorsal root ganglia from the L4-L6 segment of the spinal cord were harvested for subsequent experiments. We measured pro-inflammatory cytokines, examined the relationship between TRPV1 on neurons and P2X7 receptor on satellite glial cells by measuring protein and transcription levels of P2X7 receptor and TRPV1, and measured protein expression in the PKCε/P38 MAPK/NF-κB signaling pathway after intrathecal injection. P2X7 shRNA and p38 inhibitor relieved hyperalgesia in diabetic neuropathic pain rats and modulated inflammatory factors in vivo. P2X7 shRNA and P38 inhibitors significantly reduced TRPV1 expression by downregulating the PKCε/P38 MAPK/NF-κB signaling pathway and inflammatory factors in dorsal root ganglia. Intrathecal injection of P2X7 shRNA alleviates nociceptive reactions in rats with diabetic neuropathic pain involving TRPV1 via PKCε/P38 MAPK/NF-κB signaling pathway.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
23
Issue :
22
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.7b31af23744b79b4e8037b093cabd3
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms232214141