Back to Search Start Over

Nanohollow Titanium Oxide Structures on Ti/FTO Glass Formed by Step-Bias Anodic Oxidation for Photoelectrochemical Enhancement

Authors :
Chi-Hsien Huang
Yu-Jen Lu
Yong-Chen Pan
Hui-Ling Liu
Jia-Yuan Chang
Jhao-Liang Sie
Dorota G. Pijanowska
Chia-Ming Yang
Source :
Nanomaterials, Vol 12, Iss 11, p 1925 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

In this study, a new anodic oxidation with a step-bias increment is proposed to evaluate oxidized titanium (Ti) nanostructures on transparent fluorine-doped tin oxide (FTO) on glass. The optimal Ti thickness was determined to be 130 nm. Compared to the use of a conventional constant bias of 25 V, a bias ranging from 5 V to 20 V with a step size of 5 V for 3 min per period can be used to prepare a titanium oxide (TiOx) layer with nanohollows that shows a large increase in current of 142% under UV illumination provided by a 365 nm LED at a power of 83 mW. Based on AFM and SEM, the TiOx grains formed in the step-bias anodic oxidation were found to lead to nanohollow generation. Results obtained from EDS mapping, HR-TEM and XPS all verified the TiOx composition and supported nanohollow formation. The nanohollows formed in a thin TiOx layer can lead to a high surface roughness and photon absorbance for photocurrent generation. With this step-bias anodic oxidation methodology, TiOx with nanohollows can be obtained easily without any extra cost for realizing a high current under photoelectrochemical measurements that shows potential for electrochemical-based sensing applications.

Details

Language :
English
ISSN :
20794991 and 54186463
Volume :
12
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.7b75ced54186463d8ff8d8864772909a
Document Type :
article
Full Text :
https://doi.org/10.3390/nano12111925