Back to Search Start Over

Screening and Identification of Novel Potential Biomarkers for Breast Cancer Brain Metastases

Authors :
Lulu Wang
Dan Zeng
Qi Wang
Li Liu
Tao Lu
Yan Gao
Source :
Frontiers in Oncology, Vol 11 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Brain metastases represent a major cause of mortality among patients with breast cancer, and few effective targeted treatment options are currently available. Development of new biomarkers and therapeutic targets for breast cancer brain metastases (BCBM) is therefore urgently needed. In this study, we compared the gene expression profiles of the brain metastatic cell line MDA-MB-231-BR (231-BR) and its parental MDA-MB-231, and identified a total of 84 genes in the primary screening through a series of bioinformatic analyses, including construction of protein-protein interaction (PPI) networks by STRING database, identification of hub genes by applying of MCODE and Cytohubba algorithms, identification of leading-edge subsets of Gene Set Enrichment Analysis (GSEA), and identification of most up-regulated genes. Eight genes were identified as candidate genes due to their elevated expression in brain metastatic 231-BR cells and prognostic values in patients with BCBM. Then we knocked down the eight individual candidate genes in 231-BR cells and evaluated their impact on cell migration through a wound-healing assay, and four of them (KRT19, FKBP10, GSK3B and SPANXB1) were finally identified as key genes. Furthermore, the expression of individual key genes showed a correlation with the infiltration of major immune cells in the brain tumor microenvironment (TME) as analyzed by Tumor Immune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis (GEPIA), suggesting possible roles of them in regulation of the tumor immune response in TME. Therefore, the present work may provide new potential biomarkers for BCBM. Additionally, using GSEA, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis, we determined the top enriched cellular functions or pathways in 231-BR cells, which may help better understand the biology governing the development and progression of BCBM.

Details

Language :
English
ISSN :
2234943X
Volume :
11
Database :
Directory of Open Access Journals
Journal :
Frontiers in Oncology
Publication Type :
Academic Journal
Accession number :
edsdoj.7c086a6f08ca4a0fb50f72eb0a96d549
Document Type :
article
Full Text :
https://doi.org/10.3389/fonc.2021.784096