Back to Search Start Over

Analysis of Transient Behavior of Mixed High Voltage DC Transmission Line Under Lightning Strikes

Authors :
Mansoor Asif
Ho-Yun Lee
Umer Amir Khan
Kyu-Hoon Park
Bang Wook Lee
Source :
IEEE Access, Vol 7, Pp 7194-7205 (2019)
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

Growing urbanization coupled with increased power demands have led to increasing use of mixed power transmission lines with sections of overhead lines (OHL) and underground cables. Due to differences in surge impedance of cables and OHL, voltage surges experience reflections and refractions at their boundaries which make the transient behavior of mixed high voltage direct current (HVDC) line quite peculiar. Lightning strikes on overhead sections of lines induce voltage surges that travel along OHL and enter the cable section. Lightning overvoltage can cause OHL insulators to flashover and stress cable insulation or cause its permanent breakdown. In this paper, we simulated a fast front model of a mixed HVDC transmission line using an electromagnetic transient simulation program (PSCAD) to analyze its transient behavior under a lightning strike. The leader progression model has been used to predict the dielectric performance of OHL insulators. It has been shown that transition towers adjacent to the cable section are much less vulnerable to flashover than subsequent towers. The length of a riser section (connecting OHL and cable) and tower footing impedance have shown to significantly influence the flashover performance of OHL insulators. In addition, the length of cable segments and sheath grounding impedance has been found to influence cable overvoltage. This paper can be used to evaluate the insulation coordination and overvoltage protection requirements for a mixed HVDC transmission line.

Details

Language :
English
ISSN :
21693536
Volume :
7
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.7c0d4dca6a8c4913abac3751770e9739
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2018.2889828