Back to Search Start Over

Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural

Authors :
Juan Carro
Elena Fernández-Fueyo
Carmen Fernández-Alonso
Javier Cañada
René Ullrich
Martin Hofrichter
Miguel Alcalde
Patricia Ferreira
Angel T. Martínez
Source :
Biotechnology for Biofuels, Vol 11, Iss 1, Pp 1-10 (2018)
Publication Year :
2018
Publisher :
BMC, 2018.

Abstract

Abstract Background 2,5-Furandicarboxylic acid is a renewable building block for the production of polyfurandicarboxylates, which are biodegradable polyesters expected to substitute their classical counterparts derived from fossil resources. It may be produced from bio-based 5-hydroxymethylfurfural or 5-methoxymethylfurfural, both obtained by the acidic dehydration of biomass-derived fructose. 5-Methoxymethylfurfural, which is produced in the presence of methanol, generates less by-products and exhibits better storage stability than 5-hydroxymethylfurfural being, therefore, the industrial substrate of choice. Results In this work, an enzymatic cascade involving three fungal oxidoreductases has been developed for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. Aryl-alcohol oxidase and unspecific peroxygenase act on 5-methoxymethylfurfural and its partially oxidized derivatives yielding 2,5-furandicarboxylic acid, as well as methanol as a by-product. Methanol oxidase takes advantage of the methanol released for in situ producing H2O2 that, along with that produced by aryl-alcohol oxidase, fuels the peroxygenase reactions. In this way, the enzymatic cascade proceeds independently, with the only input of atmospheric O2, to attain a 70% conversion of initial 5-methoxymethylfurfural. The addition of some exogenous methanol to the reaction further improves the yield to attain an almost complete conversion of 5-methoxymethylfurfural into 2,5-furandicarboxylic acid. Conclusions The synergistic action of aryl-alcohol oxidase and unspecific peroxygenase in the presence of 5-methoxymethylfurfural and O2 is sufficient for the production of 2,5-furandicarboxylic acid. The addition of methanol oxidase to the enzymatic cascade increases the 2,5-furandicarboxylic acid yields by oxidizing a reaction by-product to fuel the peroxygenase reactions.

Details

Language :
English
ISSN :
17546834
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Biotechnology for Biofuels
Publication Type :
Academic Journal
Accession number :
edsdoj.7c2a800f778e4028bcc3d0ade7fcd196
Document Type :
article
Full Text :
https://doi.org/10.1186/s13068-018-1091-2