Back to Search Start Over

Analysis, modelling and forecasting of crop yields using artificial neural networks

Authors :
Ruslan M. Bischokov
Source :
RUDN Journal of Agronomy and Animal Industries, Vol 17, Iss 2, Pp 146-157 (2022)
Publication Year :
2022
Publisher :
Peoples’ Friendship University of Russia (RUDN University), 2022.

Abstract

The article gives information about the attempt made to select configurations, train and test artificial neural networks for predicting yields of grain crops considering of climate changes. Peculiarities of agricultural production require constant improvement of methods for analyzing crop yields, time series, and longterm climatic characteristics. Preliminary statistical evaluation of the considered time series made it possible to identify certain patterns. Time series were divided into four intervals: for building a network, its training, testing and control. During the construction of artificial neural networks, three models were used: MLP - multilayer perceptron, RBF - r adial basis functions and GRNN - g eneralized regression neural network. Based on the results of the construction, the best model was chosen. The sum of active air temperatures and the sum of precipitation for the growing season was used for artificial neural networks at the input, and the crop yield was used at the output. The use of sets of neural systems, generated automatically, contributed to the effective forecasting of crop yields based on the analysis of climate data. As a result, according to the selected model, a yield forecast was made for the coming years considering climatic characteristics.

Details

Language :
English, Russian
ISSN :
2312797X and 23127988
Volume :
17
Issue :
2
Database :
Directory of Open Access Journals
Journal :
RUDN Journal of Agronomy and Animal Industries
Publication Type :
Academic Journal
Accession number :
edsdoj.7c5cb3af186b4a13a9b12dd4c9ce2b1d
Document Type :
article
Full Text :
https://doi.org/10.22363/2312-797X-2022-17-2-146-157