Back to Search Start Over

A Novel Dehydrated Human Umbilical Cord Particulate Medical Device: Matrix Characterization, Performance, and Biocompatibility for the Management of Acute and Chronic Wounds

Authors :
Dominique Croteau
Molly Buckley
Morgan Mantay
Courtney Brannan
Annelise Roy
Barbara Barbaro
Sarah Griffiths
Source :
Bioengineering, Vol 11, Iss 6, p 588 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Chronic wounds present a significant socioeconomic burden forecasted to increase in prevalence and cost. Minimally manipulated human placental tissues have been increasingly employed and proven to be advantageous in the treatment of chronic wounds, showing improved clinical outcomes and cost-effectiveness. However, technological advances have been constrained by minimal manipulation and homologous use criteria. This study focuses on the characterization of a novel dehydrated human umbilical cord particulate (dHUCP) medical device, which offers a unique allogeneic technological advancement and the first human birth tissue device for wound management. Characterization analyses illustrated a complex extracellular matrix composition conserved in the dHUCP device compared to native umbilical cord, with abundant collagens and glycosaminoglycans imbibing an intricate porous scaffold. Dermal fibroblasts readily attached to the intact scaffold of the dHUCP device. Furthermore, the dHUCP device elicited a significant paracrine proliferative response in dermal fibroblasts, in contrast to fibrillar collagen, a prevalent wound device. Biocompatibility testing in a porcine full-thickness wound model showed resorption of the dHUCP device and normal granulation tissue maturation during healing. The dHUCP device is a promising advancement in wound management biomaterials, offering a unique combination of structural complexity adept for challenging wound topographies and a microenvironment supportive of tissue regeneration.

Details

Language :
English
ISSN :
23065354
Volume :
11
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Bioengineering
Publication Type :
Academic Journal
Accession number :
edsdoj.7cbe49a199f343afb7692cbdfd6319e7
Document Type :
article
Full Text :
https://doi.org/10.3390/bioengineering11060588