Back to Search Start Over

Swing Origami‐Structure‐Based Triboelectric Nanogenerator for Harvesting Blue Energy toward Marine Environmental Applications

Authors :
Weilong Liu
Xiutong Wang
Lihui Yang
Youqiang Wang
Hui Xu
Yanan Sun
Youbo Nan
Congtao Sun
Hui Zhou
Yanliang Huang
Source :
Advanced Science, Vol 11, Iss 23, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract The appearance of triboelectric nanogenerators (TENG) provides a promising energy technology for harvesting abundant water wave energy. Here, the design and fabrication of a swinging origami‐structured TENG (SO‐TENG) tailored specifically for water wave energy harvesting are presented. The design incorporates an oscillating structure weighted at the bottom, inducing reciprocating motion propelled by the inertia of passing water waves. This reciprocating motion efficiently converts mechanical into electrical energy through the origami structure. By employing origami as the monomer structure, the surface contact area between friction layers is enhanced, thereby optimizing output performance. the swinging structure, combined with the placement of heavy objects, enhances the folding and contact of the origami, allowing it to operate effectively in low‐frequency water wave environments. This configuration exhibits robust power generation capabilities, making it suitable for powering small electronic devices in water wave environments. Furthermore, when applied to metal corrosion protection, the SO‐TENG demonstrates notable efficacy. Compared to exposed Q235 carbon steel, Q235 carbon steel protected by SO‐TENG exhibits a significant reduction in open‐circuit potential drop, approximately 155 mV, indicative of superior anti‐corrosion properties. It lays a solid foundation for water wave energy collection and self‐powered metal corrosion protection in marine environments.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
23
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.7d61118f16a4adca859847dacff6419
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202401578