Back to Search
Start Over
Physics-Informed Deep Learning for Traffic State Estimation: A Survey and the Outlook
- Source :
- Algorithms, Vol 16, Iss 6, p 305 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- For its robust predictive power (compared to pure physics-based models) and sample-efficient training (compared to pure deep learning models), physics-informed deep learning (PIDL), a paradigm hybridizing physics-based models and deep neural networks (DNNs), has been booming in science and engineering fields. One key challenge of applying PIDL to various domains and problems lies in the design of a computational graph that integrates physics and DNNs. In other words, how the physics is encoded into DNNs and how the physics and data components are represented. In this paper, we offer an overview of a variety of architecture designs of PIDL computational graphs and how these structures are customized to traffic state estimation (TSE), a central problem in transportation engineering. When observation data, problem type, and goal vary, we demonstrate potential architectures of PIDL computational graphs and compare these variants using the same real-world dataset.
Details
- Language :
- English
- ISSN :
- 19994893
- Volume :
- 16
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Algorithms
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7d79cf8e00a2417c98c286cb90c0faae
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/a16060305