Back to Search Start Over

Autophagy: Mechanisms and Therapeutic Potential of Flavonoids in Cancer

Authors :
Xuening Pang
Xiaoyi Zhang
Yuhuan Jiang
Quanzhong Su
Qun Li
Zichao Li
Source :
Biomolecules, Vol 11, Iss 2, p 135 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Autophagy, which is a conserved biological process and essential mechanism in maintaining homeostasis and metabolic balance, enables cells to degrade cytoplasmic constituents through lysosomes, recycle nutrients, and survive during starvation. Autophagy exerts an anticarcinogenic role in normal cells and inhibits the malignant transformation of cells. On the other hand, aberrations in autophagy are involved in gene derangements, cell metabolism, the process of tumor immune surveillance, invasion and metastasis, and tumor drug-resistance. Therefore, autophagy-targeted drugs may function as anti-tumor agents. Accumulating evidence suggests that flavonoids have anticarcinogenic properties, including those relating to cellular proliferation inhibition, the induction of apoptosis, autophagy, necrosis, cell cycle arrest, senescence, the impairment of cell migration, invasion, tumor angiogenesis, and the reduction of multidrug resistance in tumor cells. Flavonoids, which are a group of natural polyphenolic compounds characterized by multiple targets that participate in multiple pathways, have been widely studied in different models for autophagy modulation. However, flavonoid-induced autophagy commonly interacts with other mechanisms, comprehensively influencing the anticancer effect. Accordingly, targeted autophagy may become the core mechanism of flavonoids in the treatment of tumors. This paper reviews the flavonoid-induced autophagy of tumor cells and their interaction with other mechanisms, so as to provide a comprehensive and in-depth account on how flavonoids exert tumor-suppressive effects through autophagy.

Details

Language :
English
ISSN :
2218273X
Volume :
11
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Biomolecules
Publication Type :
Academic Journal
Accession number :
edsdoj.7d9c24fdb9eb491eafaceee54b84be44
Document Type :
article
Full Text :
https://doi.org/10.3390/biom11020135