Back to Search
Start Over
Fast Feature Extraction Method for Brillouin Scattering Spectrum of OPGW Optical Cable Based on BOTDR
- Source :
- Sensors, Vol 23, Iss 19, p 8166 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Brillouin optical time domain reflectometry (BOTDR) detects fiber temperature and strain data and represents one of the most critical ways of identifying abnormal conditions such as ice coverage and lightning strikes on optical fiber composite overhead ground wire (OPGW) cable. Existing BOTDR extracts brillouin frequency shift (BFS) features with cumulative averaging and curve fitting. BFS feature extraction is slow for long-distance measurements, making realizing real-time measurements on fiber optic cables challenging. We propose a fast feature extraction method for block matching and 3D filtering (BM3D) + Sobel brillouin scattering spectroscopy (BGS). BM3D takes the advantage of non-local means (NLM) and wavelet denoising (WD) and utilizes the spatial-domain non-local principle to enhance the denoising in the transform domain. The global filtering capability of BM3D is utilized to filter out the low cumulative average BGS noise and the BFS feature extraction is completed using Sobel edge detection. Simulation verifies the feasibility of the algorithm, and the proposed method is embedded in BOTDR to measure 30 km of actual OPGW line. The experimental results show that under the same conditions, the processing time of this method is reduced by 37 times compared to that with the 50,000-time cumulative averaging + levenberg marquardt (LM) algorithm without severe distortion of the reference resolution. The method improves the sensor demodulation speed by using image processing technology without changing the existing hardware equipment, which is expected to be widely used in the new generation of BOTDR.
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 23
- Issue :
- 19
- Database :
- Directory of Open Access Journals
- Journal :
- Sensors
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7df90df18bcb41398bf2f7c25acddbad
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/s23198166