Back to Search
Start Over
Loss of Kat2a enhances transcriptional noise and depletes acute myeloid leukemia stem-like cells
- Source :
- eLife, Vol 9 (2020)
- Publication Year :
- 2020
- Publisher :
- eLife Sciences Publications Ltd, 2020.
-
Abstract
- Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy with abnormal progenitor self-renewal and defective white blood cell differentiation. Its pathogenesis comprises subversion of transcriptional regulation, through mutation and by hijacking normal chromatin regulation. Kat2a is a histone acetyltransferase central to promoter activity, that we recently associated with stability of pluripotency networks, and identified as a genetic vulnerability in AML. Through combined chromatin profiling and single-cell transcriptomics of a conditional knockout mouse, we demonstrate that Kat2a contributes to leukemia propagation through preservation of leukemia stem-like cells. Kat2a loss impacts transcription factor binding and reduces transcriptional burst frequency in a subset of gene promoters, generating enhanced variability of transcript levels. Destabilization of target programs shifts leukemia cell fate out of self-renewal into differentiation. We propose that control of transcriptional variability is central to leukemia stem-like cell propagation, and establish a paradigm exploitable in different tumors and distinct stages of cancer evolution.
Details
- Language :
- English
- ISSN :
- 2050084X
- Volume :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- eLife
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7e6a3304b0f24a67ac18c5d424b673f5
- Document Type :
- article
- Full Text :
- https://doi.org/10.7554/eLife.51754