Back to Search
Start Over
Mechanism of environmentally driven conformational changes that modulate H-NS DNA-bridging activity
- Source :
- eLife, Vol 6 (2017)
- Publication Year :
- 2017
- Publisher :
- eLife Sciences Publications Ltd, 2017.
-
Abstract
- Bacteria frequently need to adapt to altered environmental conditions. Adaptation requires changes in gene expression, often mediated by global regulators of transcription. The nucleoid-associated protein H-NS is a key global regulator in Gram-negative bacteria and is believed to be a crucial player in bacterial chromatin organization via its DNA-bridging activity. H-NS activity in vivo is modulated by physico-chemical factors (osmolarity, pH, temperature) and interaction partners. Mechanistically, it is unclear how functional modulation of H-NS by such factors is achieved. Here, we show that a diverse spectrum of H-NS modulators alter the DNA-bridging activity of H-NS. Changes in monovalent and divalent ion concentrations drive an abrupt switch between a bridging and non-bridging DNA-binding mode. Similarly, synergistic and antagonistic co-regulators modulate the DNA-bridging efficiency. Structural studies suggest a conserved mechanism: H-NS switches between a ‘closed’ and an ‘open’, bridging competent, conformation driven by environmental cues and interaction partners.
Details
- Language :
- English
- ISSN :
- 2050084X
- Volume :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- eLife
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7e8de8306837484288f8eca19e55465f
- Document Type :
- article
- Full Text :
- https://doi.org/10.7554/eLife.27369