Back to Search Start Over

18 F-ASEM PET/MRI targeting alpha7-nicotinic acetylcholine receptor can reveal skeletal muscle denervation

Authors :
Yong-il Kim
Seung Hak Lee
Jin Hwa Jung
Seog-Young Kim
Nare Ko
Sang Ju Lee
Seung Jun Oh
Jin-Sook Ryu
Dabin Ko
Won Kim
Kyunggon Kim
Source :
EJNMMI Research, Vol 14, Iss 1, Pp 1-9 (2024)
Publication Year :
2024
Publisher :
SpringerOpen, 2024.

Abstract

Abstract Background The increased expression of the nicotinic acetylcholine receptor (nAChR) in muscle denervation is thought to be associated with electrophysiological acetylcholine supersensitivity after nerve injury. Hence, we investigated the utility of the 18F-ASEM alpha7-nAChR targeting radiotracer as a new diagnostic method by visualizing skeletal muscle denervation in mouse models of sciatic nerve injury. Methods Ten-week-old C57BL/6 male mice were utilized. The mice were anesthetized, and the left sciatic nerve was resected after splitting the gluteal muscle. One week (n = 11) and three weeks (n = 6) after the denervation, 18F-ASEM positron emission tomography/magnetic resonance imaging (PET/MRI) was acquired. Maximum standardized uptake values (SUVmax) of the tibialis anterior muscle were measured for the denervated side and the control side. Autoradiographic evaluation was performed to measure the mean counts of the denervated and control tibialis anterior muscles at one week. In addition, immunohistochemistry was used to identify alpha7-nAChR-positive areas in denervated and control tibialis anterior muscles at one week (n = 6). Furthermore, a blocking study was conducted with methyllycaconitine (MLA, n = 5). Results 18F-ASEM PET/MRI showed significantly increased 18F-ASEM uptake in the denervated tibialis anterior muscle relative to the control side one week and three weeks post-denervation. SUVmax of the denervated muscles at one week and three weeks showed significantly higher uptake than the control (P = 0.0033 and 0.0277, respectively). The relative uptake by autoradiography for the denervated muscle was significantly higher than in the control, and immunohistochemistry revealed significantly greater alpha7-nAChR expression in the denervated muscle (P = 0.0277). In addition, the blocking study showed no significant 18F-ASEM uptake in the denervated side when compared to the control (P = 0.0796). Conclusions Our results suggest that nAChR imaging with 18F-ASEM has potential as a noninvasive diagnostic method for peripheral nervous system disorders.

Details

Language :
English
ISSN :
2191219X
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
EJNMMI Research
Publication Type :
Academic Journal
Accession number :
edsdoj.7ea6272d69184eddaebe88a7ea9c8c5d
Document Type :
article
Full Text :
https://doi.org/10.1186/s13550-024-01067-9