Back to Search Start Over

Machine-learning-assisted and real-time-feedback-controlled growth of InAs/GaAs quantum dots

Authors :
Chao Shen
Wenkang Zhan
Kaiyao Xin
Manyang Li
Zhenyu Sun
Hui Cong
Chi Xu
Jian Tang
Zhaofeng Wu
Bo Xu
Zhongming Wei
Chunlai Xue
Chao Zhao
Zhanguo Wang
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The applications of self-assembled InAs/GaAs quantum dots (QDs) for lasers and single photon sources strongly rely on their density and quality. Establishing the process parameters in molecular beam epitaxy (MBE) for a specific density of QDs is a multidimensional optimization challenge, usually addressed through time-consuming and iterative trial-and-error. Here, we report a real-time feedback control method to realize the growth of QDs with arbitrary density, which is fully automated and intelligent. We develop a machine learning (ML) model named 3D ResNet 50 trained using reflection high-energy electron diffraction (RHEED) videos as input instead of static images and providing real-time feedback on surface morphologies for process control. As a result, we demonstrate that ML from previous growth could predict the post-growth density of QDs, by successfully tuning the QD densities in near-real time from 1.5 × 1010 cm−2 down to 3.8 × 108 cm−2 or up to 1.4 × 1011 cm−2. Compared to traditional methods, our approach can dramatically expedite the optimization process and improve the reproducibility of MBE. The concepts and methodologies proved feasible in this work are promising to be applied to a variety of material growth processes, which will revolutionize semiconductor manufacturing for optoelectronic and microelectronic industries.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.7eb376eac7ad41039afc79345eb06496
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-47087-w