Back to Search
Start Over
GLIMS: A two-stage gradual-learning method for cancer genes prediction using multi-omics data and co-splicing network
- Source :
- iScience, Vol 27, Iss 4, Pp 109387- (2024)
- Publication Year :
- 2024
- Publisher :
- Elsevier, 2024.
-
Abstract
- Summary: Identifying cancer genes is vital for cancer diagnosis and treatment. However, because of the complexity of cancer occurrence and limited cancer genes knowledge, it is hard to identify cancer genes accurately using only a few omics data, and the overall performance of existing methods is being called for further improvement. Here, we introduce a two-stage gradual-learning strategy GLIMS to predict cancer genes using integrative features from multi-omics data. Firstly, it uses a semi-supervised hierarchical graph neural network to predict the initial candidate cancer genes by integrating multi-omics data and protein-protein interaction (PPI) network. Then, it uses an unsupervised approach to further optimize the initial prediction by integrating the co-splicing network in post-transcriptional regulation, which plays an important role in cancer development. Systematic experiments on multi-omics cancer data demonstrated that GLIMS outperforms the state-of-the-art methods for the identification of cancer genes and it could be a useful tool to help advance cancer analysis.
- Subjects :
- Biocomputational method
Cancer systems biology
Cancer
Omics
Machine learning
Science
Subjects
Details
- Language :
- English
- ISSN :
- 25890042
- Volume :
- 27
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- iScience
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7ec9fe7fcac46ff9dfd22e7924dee98
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.isci.2024.109387