Back to Search Start Over

Circadian preference modulates the neural substrate of conflict processing across the day.

Authors :
Christina Schmidt
Philippe Peigneux
Yves Leclercq
Virginie Sterpenich
Gilles Vandewalle
Christophe Phillips
Pierre Berthomier
Christian Berthomier
Gilberte Tinguely
Steffen Gais
Manuel Schabus
Martin Desseilles
Thanh Dang-Vu
Eric Salmon
Christian Degueldre
Evelyne Balteau
André Luxen
Christian Cajochen
Pierre Maquet
Fabienne Collette
Source :
PLoS ONE, Vol 7, Iss 1, p e29658 (2012)
Publication Year :
2012
Publisher :
Public Library of Science (PLoS), 2012.

Abstract

Human morning and evening chronotypes differ in their preferred timing for sleep and wakefulness, as well as in optimal daytime periods to cope with cognitive challenges. Recent evidence suggests that these preferences are not a simple by-product of socio-professional timing constraints, but can be driven by inter-individual differences in the expression of circadian and homeostatic sleep-wake promoting signals. Chronotypes thus constitute a unique tool to access the interplay between those processes under normally entrained day-night conditions, and to investigate how they impinge onto higher cognitive control processes. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on conflict processing-related cerebral activity throughout a normal waking day. Sixteen morning and 15 evening types were recorded at two individually adapted time points (1.5 versus 10.5 hours spent awake) while performing the Stroop paradigm. Results show that interference-related hemodynamic responses are maintained or even increased in evening types from the subjective morning to the subjective evening in a set of brain areas playing a pivotal role in successful inhibitory functioning, whereas they decreased in morning types under the same conditions. Furthermore, during the evening hours, activity in a posterior hypothalamic region putatively involved in sleep-wake regulation correlated in a chronotype-specific manner with slow wave activity at the beginning of the night, an index of accumulated homeostatic sleep pressure. These results shed light into the cerebral mechanisms underlying inter-individual differences of higher-order cognitive state maintenance under normally entrained day-night conditions.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.7edaeed058e649e48ab9f0260d30231c
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0029658