Back to Search Start Over

MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death

Authors :
Mohammad K. Eldomery
Zeynep C. Akdemir
F.-Nora Vögtle
Wu-Lin Charng
Patrycja Mulica
Jill A. Rosenfeld
Tomasz Gambin
Shen Gu
Lindsay C. Burrage
Aisha Al Shamsi
Samantha Penney
Shalini N. Jhangiani
Holly H. Zimmerman
Donna M. Muzny
Xia Wang
Jia Tang
Ravi Medikonda
Prasanna V. Ramachandran
Lee-Jun Wong
Eric Boerwinkle
Richard A. Gibbs
Christine M. Eng
Seema R. Lalani
Jozef Hertecant
Richard J. Rodenburg
Omar A. Abdul-Rahman
Yaping Yang
Fan Xia
Meng C. Wang
James R. Lupski
Chris Meisinger
V. Reid Sutton
Source :
Genome Medicine, Vol 8, Iss 1, Pp 1-13 (2016)
Publication Year :
2016
Publisher :
BMC, 2016.

Abstract

Abstract Background Mitochondrial presequence proteases perform fundamental functions as they process about 70 % of all mitochondrial preproteins that are encoded in the nucleus and imported posttranslationally. The mitochondrial intermediate presequence protease MIP/Oct1, which carries out precursor processing, has not yet been established to have a role in human disease. Methods Whole exome sequencing was performed on four unrelated probands with left ventricular non-compaction (LVNC), developmental delay (DD), seizures, and severe hypotonia. Proposed pathogenic variants were confirmed by Sanger sequencing or array comparative genomic hybridization. Functional analysis of the identified MIP variants was performed using the model organism Saccharomyces cerevisiae as the protein and its functions are highly conserved from yeast to human. Results Biallelic single nucleotide variants (SNVs) or copy number variants (CNVs) in MIPEP, which encodes MIP, were present in all four probands, three of whom had infantile/childhood death. Two patients had compound heterozygous SNVs (p.L582R/p.L71Q and p.E602*/p.L306F) and one patient from a consanguineous family had a homozygous SNV (p.K343E). The fourth patient, identified through the GeneMatcher tool, a part of the Matchmaker Exchange Project, was found to have inherited a paternal SNV (p.H512D) and a maternal CNV (1.4-Mb deletion of 13q12.12) that includes MIPEP. All amino acids affected in the patients’ missense variants are highly conserved from yeast to human and therefore S. cerevisiae was employed for functional analysis (for p.L71Q, p.L306F, and p.K343E). The mutations p.L339F (human p.L306F) and p.K376E (human p.K343E) resulted in a severe decrease of Oct1 protease activity and accumulation of non-processed Oct1 substrates and consequently impaired viability under respiratory growth conditions. The p.L83Q (human p.L71Q) failed to localize to the mitochondria. Conclusions Our findings reveal for the first time the role of the mitochondrial intermediate peptidase in human disease. Loss of MIP function results in a syndrome which consists of LVNC, DD, seizures, hypotonia, and cataracts. Our approach highlights the power of data exchange and the importance of an interrelationship between clinical and research efforts for disease gene discovery.

Details

Language :
English
ISSN :
1756994X
Volume :
8
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Genome Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.7f523fab43c141578a90e6f14b7220f7
Document Type :
article
Full Text :
https://doi.org/10.1186/s13073-016-0360-6