Back to Search
Start Over
An injectable photo-cross-linking silk hydrogel system augments diabetic wound healing in orthopaedic surgery through spatiotemporal immunomodulation
- Source :
- Journal of Nanobiotechnology, Vol 20, Iss 1, Pp 1-22 (2022)
- Publication Year :
- 2022
- Publisher :
- BMC, 2022.
-
Abstract
- Abstract Background The complicated hyperglycaemic and chronic inflammation of diabetic wounds in orthopaedic surgery leads to dysregulated immune cell function and potential infection risk. Immune interventions in diabetic wounds face a possible contradiction between simultaneous establishment of the pro-inflammatory microenvironment in response to potential bacterial invasion and the anti-inflammatory microenvironment required for tissue repair. To study this contradiction and accelerate diabetic-wound healing, we developed a photocurable methacryloxylated silk fibroin hydrogel (Sil-MA) system, co-encapsulated with metformin-loaded mesoporous silica microspheres (MET@MSNs) and silver nanoparticles (Ag NPs). Results The hydrogel system (M@M–Ag–Sil-MA) enhanced diabetic-wound healing via spatiotemporal immunomodulation. Sil-MA imparts a hydrogel system with rapid in situ Ultra-Violet-photocurable capability and allows preliminary controlled release of Ag NPs, which can inhibit bacterial aggregation and create a stable, sterile microenvironment. The results confirmed the involvement of Met in the immunomodulatory effects following spatiotemporal dual-controlled release via the mesoporous silica and Sil-MA. Hysteresis-released from Met shifts the M1 phenotype of macrophages in regions of diabetic trauma to an anti-inflammatory M2 phenotype. Simultaneously, the M@M–Ag–Sil-MA system inhibited the formation of neutrophil extracellular traps (NETs) and decreased the release of neutrophil elastase, myeloperoxidase, and NETs-induced pro-inflammatory factors. As a result of modulating the immune microenvironmental, the M@M–Ag–Sil-MA system promoted fibroblast migration and endothelial cell angiogenesis in vivo, with verification of enhanced diabetic-wound healing accompanied with the spatiotemporal immunoregulation of macrophages and NETs in a diabetic mouse model. Conclusions Our findings demonstrated that the M@M–Ag–Sil-MA hydrogel system resolved the immune contradiction in diabetic wounds through spatiotemporal immunomodulation of macrophages and NETs, suggesting its potential as a promising engineered nano-dressing for the treatment of diabetic wounds in orthopaedic surgery. Graphical Abstract
Details
- Language :
- English
- ISSN :
- 14773155
- Volume :
- 20
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Nanobiotechnology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7fbc1462199d4c718044c5613d054d35
- Document Type :
- article
- Full Text :
- https://doi.org/10.1186/s12951-022-01414-9