Back to Search Start Over

Zn2+–Imidazole Coordination Crosslinks for Elastic Polymeric Binders in High‐Capacity Silicon Electrodes

Authors :
Jaemin Kim
Kiho Park
Yunshik Cho
Hyuksoo Shin
Sungchan Kim
Kookheon Char
Jang Wook Choi
Source :
Advanced Science, Vol 8, Iss 9, Pp n/a-n/a (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Abstract Recent research has built a consensus that the binder plays a key role in the performance of high‐capacity silicon anodes in lithium‐ion batteries. These anodes necessitate the use of a binder to maintain the electrode integrity during the immense volume change of silicon during cycling. Here, Zn2+–imidazole coordination crosslinks that are formed to carboxymethyl cellulose backbones in situ during electrode fabrication are reported. The recoverable nature of Zn2+–imidazole coordination bonds and the flexibility of the poly(ethylene glycol) chains are jointly responsible for the high elasticity of the binder network. The high elasticity tightens interparticle contacts and sustains the electrode integrity, both of which are beneficial for long‐term cyclability. These electrodes, with their commercial levels of areal capacities, exhibit superior cycle life in full‐cells paired with LiNi0.8Co0.15Al0.05O2 cathodes. The present study underlines the importance of highly reversible metal ion‐ligand coordination chemistries for binders intended for high capacity alloying‐based electrodes.

Details

Language :
English
ISSN :
21983844
Volume :
8
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.8076cc0bad424017aeac5f9d7f657a59
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202004290