Back to Search Start Over

In Vitro Interactions of Antifungal Agents and Everolimus Against Aspergillus Species

Authors :
Huiping Jiang
Jianqun Xiong
Lihua Tan
Ping Jin
Yi Sun
Lianjuan Yang
Jingwen Tan
Source :
Frontiers in Cellular and Infection Microbiology, Vol 12 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Multiple cellular activities, including protein and lipid synthesis, ribosome biogenesis, and metabolic processes, are regulated by the target of rapamycin (TOR) pathway. Recent research suggests that the TOR might play an important role in various physiological functions of pathogenic fungi, such as nutrient sensing, stress response, and cell cycle progression. Given their robust immunosuppressant and antitumor activities, TOR inhibitors are widely used in clinical settings. In the present study, a microdilution checkerboard-based approach was employed to assess the interactions between the oral mammalian target of rapamycin (mTOR) inhibitor everolimus (EVL) and antifungal agents in the treatment of Aspergillus species derived from 35 clinical isolates in vitro. The results revealed that EVL exhibited promising inhibitory synergy with itraconazole (ITC), posaconazole (POS), and amphotericin B (AMB) for 85.7%, 74.2%, and 71.4%, respectively. In contrast, EVL exhibited minimal synergistic inhibitory activity (14.3%) when applied in combination with voriconazole (VRC). Antagonistic interactions were not observed. In vivo experiments conducted in Galleria mellonella revealed that EVL in combination with antifungal agents improved the larva survival rates in the ITC, VRC, POS, and AMB groups by 18.3%, 13.3%, 26.7%, and 13.3%, respectively. These data suggest that the combination treatment with antifungal agents and antifungal agents holds promise as a means of alleviating clinical aspergillosis.

Details

Language :
English
ISSN :
22352988
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Cellular and Infection Microbiology
Publication Type :
Academic Journal
Accession number :
edsdoj.80997ed38f4a420c8b70bbcda74b12c8
Document Type :
article
Full Text :
https://doi.org/10.3389/fcimb.2022.936814