Back to Search
Start Over
Numerical simulation of dynamics behavior of pulsed-DC helium plasma jet confined by parallel magnetic field at atmospheric pressure
- Source :
- Physical Review Research, Vol 6, Iss 3, p 033028 (2024)
- Publication Year :
- 2024
- Publisher :
- American Physical Society, 2024.
-
Abstract
- A two-dimensional axisymmetric fluid model is used to simulate the dynamics behavior of an atmospheric-pressure helium plasma jet in the presence of a parallel magnetic field. The plasma jet is generated in a coaxial dielectric barrier discharge (DBD) driven by pulsed direct-current voltage. Comparative analysis of the plasma jet with and without the parallel magnetic field indicates that a slightly thinner plasma sheath inside the tube is present with the parallel magnetic field as a result of the decreased accumulated electrons on the inner surface of dielectric tube. After the streamer propagates outside the tube, a little more concentrated electron distribution in the annular wall is observed by applying the magnetic field because of the reduced electron diffusion in the radial direction and the confinement effect of the magnetic field on the electrons in the avalanche heads. The tiny reduction in the length of plasma jet is attributed to the E × B drift of charged particles. These results demonstrate that the parallel magnetic field has no apparent effect on the propagation of the plasma jet, and it contributes little to the performance improvement of the coaxial DBD, which agrees well with the previous experimental observations. This little impact of the parallel magnetic field on the coaxial DBD plasma jet may result from negligible contribution of the memory effect to the sole discharge pulse as well as the weak confinement effect of the applied magnetic field on the surface electrons that moves along the magnetic field lines under electrostatic repulsion.
Details
- Language :
- English
- ISSN :
- 26431564
- Volume :
- 6
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- Physical Review Research
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.80ff81f07a24071b37f9580de9d2e28
- Document Type :
- article
- Full Text :
- https://doi.org/10.1103/PhysRevResearch.6.033028