Back to Search Start Over

Tissue engineering strategies for spiral ganglion neuron protection and regeneration

Authors :
Bin Zhang
Yangnan Hu
Haoliang Du
Shanying Han
Lei Ren
Hong Cheng
Yusong Wang
Xin Gao
Shasha Zheng
Qingyue Cui
Lei Tian
Tingting Liu
Jiaqiang Sun
Renjie Chai
Source :
Journal of Nanobiotechnology, Vol 22, Iss 1, Pp 1-22 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Cochlear implants can directly activate the auditory system’s primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration. Graphical Abstract

Details

Language :
English
ISSN :
14773155
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.826a3c81f2d74d30b2e88e9559d01850
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-024-02742-8