Back to Search Start Over

Transcriptional regulation and overexpression of GST cluster enhances pesticide resistance in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae)

Authors :
Minghui Jin
Yan Peng
Jie Peng
Huihui Zhang
Yinxue Shan
Kaiyu Liu
Yutao Xiao
Source :
Communications Biology, Vol 6, Iss 1, Pp 1-12 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract The rapid evolution of resistance in agricultural pest poses a serious threat to global food security. However, the mechanisms of resistance through metabolic regulation are largely unknown. Here, we found that a GST gene cluster was strongly selected in North China (NTC) population, and it was significantly genetically-linked to lambda-cyhalothrin resistance. Knockout of the GST cluster using CRISPR/Cas9 significantly increased the sensitivity of the knockout strain to lambda-cyhalothrin. Haplotype analysis revealed no non-synonymous mutations or structural variations in the GST cluster, whereas GST_119 and GST_121 were significantly overexpressed in the NTC population. Silencing of GST_119 or co-silencing of GST_119 and GST_121 with RNAi significantly increased larval sensitivity to lambda-cyhalothrin. We also identified additional GATAe transcription factor binding sites in the promoter of NTC_GST_119. Transient expression of GATAe in Hi5 cells activated NTC_GST_119 and Xinjiang (XJ)_GST_119 transcription, but the transcriptional activity of NTC_GST_119 was significantly higher than that of XJ_GST_119. These results demonstrate that variations in the regulatory region result in complex expression changes in the GST cluster, which enhances lambda-cyhalothrin resistance in field-populations. This study deepens our knowledge of the evolutionary mechanism of pest adaptation under environmental stress and provides potential targets for monitoring pest resistance and integrated management.

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
23993642
Volume :
6
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.826a77ad14d44a191d989d0346ade74
Document Type :
article
Full Text :
https://doi.org/10.1038/s42003-023-05447-0