Back to Search Start Over

Nanocarbon-Based Mixed Matrix Pebax-1657 Flat Sheet Membranes for CO2/CH4 Separation

Authors :
Athanasios N. Vasileiou
George V. Theodorakopoulos
Dionysios S. Karousos
Mirtat Bouroushian
Andreas A. Sapalidis
Evangelos P. Favvas
Source :
Membranes, Vol 13, Iss 5, p 470 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

In the present work, Pebax-1657, a commercial multiblock copolymer (poly(ether-block-amide)), consisting of 40% rigid amide (PA6) groups and 60% flexible ether (PEO) linkages, was selected as the base polymer for preparing dense flat sheet mixed matrix membranes (MMMs) using the solution casting method. Carbon nanofillers, specifically, raw and treated (plasma and oxidized) multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were incorporated into the polymeric matrix in order to improve the gas-separation performance and polymer’s structural properties. The developed membranes were characterized by means of SEM and FTIR, and their mechanical properties were also evaluated. Well-established models were employed in order to compare the experimental data with theoretical calculations concerning the tensile properties of MMMs. Most remarkably, the tensile strength of the mixed matrix membrane with oxidized GNPs was enhanced by 55.3% compared to the pure polymeric membrane, and its tensile modulus increased 3.2 times compared to the neat one. In addition, the effect of nanofiller type, structure and amount to real binary CO2/CH4 (10/90 vol.%) mixture separation performance was evaluated under elevated pressure conditions. A maximum CO2/CH4 separation factor of 21.9 was reached with CO2 permeability of 384 Barrer. Overall, MMMs exhibited enhanced gas permeabilities (up to fivefold values) without sacrificing gas selectivity compared to the corresponding pure polymeric membrane.

Details

Language :
English
ISSN :
20770375
Volume :
13
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Membranes
Publication Type :
Academic Journal
Accession number :
edsdoj.8285a90389974de3811dbc4bec1460b4
Document Type :
article
Full Text :
https://doi.org/10.3390/membranes13050470