Back to Search Start Over

Coupled power generators require stability buffers in addition to inertia

Authors :
Gurupraanesh Raman
Gururaghav Raman
Jimmy Chih-Hsien Peng
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-14 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract Increasing the inertia is widely considered to be the solution to resolving unstable interactions between coupled oscillators. In power grids, Virtual Synchronous Generators (VSGs) are proposed to compensate for reducing inertia as rotating fossil-fuel-based generators are being phased out. Yet, modeling how VSGs and rotating generators simultaneously contribute energy and inertia, we surprisingly find that instabilities of a small-signal nature could arise despite fairly high system inertia if the generators’ controls are not coordinated at the system level. Importantly, we show there exist both an optimal and a maximum number of such VSGs that can be safely supported, a previously unknown result directly useful for power utilities in long-term planning and prosumer contracting. Meanwhile, to resolve instabilities in the short term until system-level coordination can be achieved, we argue that the new market should include another commodity that we call stability storage, whereby—analogous to energy storage buffering energy imbalances—VSGs act as decentralized stability buffers. While demonstrating the effectiveness of this concept for a wide range of energy futures, we provide policymakers and utilities with a roadmap towards achieving a 100% renewable grid.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.828a6d62b8cd4fed8caf8a88605b72be
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-17065-7