Back to Search
Start Over
COVID-19 Case Recognition from Chest CT Images by Deep Learning, Entropy-Controlled Firefly Optimization, and Parallel Feature Fusion
- Source :
- Sensors, Vol 21, Iss 21, p 7286 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- In healthcare, a multitude of data is collected from medical sensors and devices, such as X-ray machines, magnetic resonance imaging, computed tomography (CT), and so on, that can be analyzed by artificial intelligence methods for early diagnosis of diseases. Recently, the outbreak of the COVID-19 disease caused many deaths. Computer vision researchers support medical doctors by employing deep learning techniques on medical images to diagnose COVID-19 patients. Various methods were proposed for COVID-19 case classification. A new automated technique is proposed using parallel fusion and optimization of deep learning models. The proposed technique starts with a contrast enhancement using a combination of top-hat and Wiener filters. Two pre-trained deep learning models (AlexNet and VGG16) are employed and fine-tuned according to target classes (COVID-19 and healthy). Features are extracted and fused using a parallel fusion approach—parallel positive correlation. Optimal features are selected using the entropy-controlled firefly optimization method. The selected features are classified using machine learning classifiers such as multiclass support vector machine (MC-SVM). Experiments were carried out using the Radiopaedia database and achieved an accuracy of 98%. Moreover, a detailed analysis is conducted and shows the improved performance of the proposed scheme.
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 21
- Issue :
- 21
- Database :
- Directory of Open Access Journals
- Journal :
- Sensors
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.835acbc92f9744119d1cabe56af80802
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/s21217286