Back to Search Start Over

Sentinel-1-Based Water and Flood Mapping: Benchmarking Convolutional Neural Networks Against an Operational Rule-Based Processing Chain

Authors :
Max Bereczky
Marc Wieland
Christian Krullikowski
Sandro Martinis
Simon Plank
Source :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 15, Pp 2023-2036 (2022)
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

In this study, the effectiveness of several convolutional neural network architectures (AlbuNet-34/FCN/DeepLabV3+/U-Net/U-Net++) for water and flood mapping using Sentinel-1 amplitude data is compared to an operational rule-based processor (S-1FS). This comparison is made using a globally distributed dataset of Sentinel-1 scenes and the corresponding ground truth water masks derived from Sentinel-2 data to evaluate the performance of the classifiers on a global scale in various environmental conditions. The impact of using single versus dual-polarized input data on the segmentation capabilities of AlbuNet-34 is evaluated. The weighted cross entropy loss is combined with the Lovász loss and various data augmentation methods are investigated. Furthermore, the concept of atrous spatial pyramid pooling used in DeepLabV3+ and the multiscale feature fusion inherent in U-Net++ are assessed. Finally, the generalization capacity of AlbuNet-34 is tested in a realistic flood mapping scenario by using additional data from two flood events and the Sen1Floods11 dataset. The model trained using dual polarized data outperforms the S-1FS significantly and increases the intersection over union (IoU) score by 5%. Using a weighted combination of the cross entropy and the Lovász loss increases the IoU score by another 2%. Geometric data augmentation degrades the performance while radiometric data augmentation leads to better testing results. FCN/DeepLabV3+/U-Net/U-Net++ perform not significantly different to AlbuNet-34. Models trained on data showing no distinct inundation perform very well in mapping the water extent during two flood events, reaching IoU scores of 0.96 and 0.94, respectively, and perform comparatively well on the Sen1Floods11 dataset.

Details

Language :
English
ISSN :
21511535
Volume :
15
Database :
Directory of Open Access Journals
Journal :
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.8391ac9b397043b5add9d583bfffb886
Document Type :
article
Full Text :
https://doi.org/10.1109/JSTARS.2022.3152127