Back to Search Start Over

The relationship between frequency content and representational dynamics in the decoding of neurophysiological data

Authors :
Cameron Higgins
Mats W.J. van Es
Andrew J. Quinn
Diego Vidaurre
Mark W. Woolrich
Source :
NeuroImage, Vol 260, Iss , Pp 119462- (2022)
Publication Year :
2022
Publisher :
Elsevier, 2022.

Abstract

Decoding of high temporal resolution, stimulus-evoked neurophysiological data is increasingly used to test theories about how the brain processes information. However, a fundamental relationship between the frequency spectra of the neural signal and the subsequent decoding accuracy timecourse is not widely recognised. We show that, in commonly used instantaneous signal decoding paradigms, each sinusoidal component of the evoked response is translated to double its original frequency in the subsequent decoding accuracy timecourses. We therefore recommend, where researchers use instantaneous signal decoding paradigms, that more aggressive low pass filtering is applied with a cut-off at one quarter of the sampling rate, to eliminate representational alias artefacts. However, this does not negate the accompanying interpretational challenges. We show that these can be resolved by decoding paradigms that utilise both a signal's instantaneous magnitude and its local gradient information as features for decoding. On a publicly available MEG dataset, this results in decoding accuracy metrics that are higher, more stable over time, and free of the technical and interpretational challenges previously characterised. We anticipate that a broader awareness of these fundamental relationships will enable stronger interpretations of decoding results by linking them more clearly to the underlying signal characteristics that drive them.

Details

Language :
English
ISSN :
10959572
Volume :
260
Issue :
119462-
Database :
Directory of Open Access Journals
Journal :
NeuroImage
Publication Type :
Academic Journal
Accession number :
edsdoj.83e0bafe7bf94a15bac65db255848c6c
Document Type :
article
Full Text :
https://doi.org/10.1016/j.neuroimage.2022.119462