Back to Search
Start Over
LEO-Enhanced GNSS/INS Tightly Coupled Integration Based on Factor Graph Optimization in the Urban Environment
- Source :
- Remote Sensing, Vol 16, Iss 10, p 1782 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Precision point positioning (PPP) utilizing the Global Navigation Satellite System (GNSS) is a traditional and widely employed technology. Its performance is susceptible to observation discontinuities and unfavorable geometric configurations. Consequently, the integration of the Inertial Navigation System (INS) and GNSS makes full use of their respective advantages and effectively mitigates the limitations of GNSS positioning. However, the GNSS/INS integration faces significant challenges in complex and harsh urban environments. In recent years, the geometry between the user and the satellite has been effectively improved with the advent of lower-orbits and faster-speed Low Earth Orbit (LEO) satellites. This enhancement provides more observation data, opening up new possibilities and opportunities for high-precision positioning. Meanwhile, in contrast to the traditional extended Kalman filter (EKF) approach, the performance of the LEO-enhanced GNSS/INS tightly coupled integration (TCI) can be significantly improved by employing the factor graph optimization (FGO) method with multiple iterations to achieve stable estimation. In this study, LEO data and the FGO method were employed to enhance the GNSS/INS TCI. To validate the effectiveness of the method, vehicle data and simulated LEO observations were subjected to thorough analysis. The results suggest that the integration of LEO data significantly enhances the positioning accuracy and convergence speed of the GNSS/INS TCI. In contrast to the FGO GNSS/INS TCI without LEO enhancement, the average enhancement effect of the LEO is 22.16%, 7.58%, and 10.13% in the north, east, and vertical directions, respectively. Furthermore, the average root mean square error (RMSE) of the LEO-enhanced FGO GNSS/INS TCI is 0.63 m, 1.21 m, and 0.85 m in the north, east, and vertical directions, respectively, representing an average improvement of 41.91%, 13.66%, and 2.52% over the traditional EKF method. Meanwhile, the simulation results demonstrate that LEO data and the FGO method effectively enhance the positioning and convergence performance of GNSS/INS TCI in GNSS-challenged environments (tall buildings, viaducts, underground tunnels, and wooded areas).
Details
- Language :
- English
- ISSN :
- 16101782 and 20724292
- Volume :
- 16
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.8438403c4b4aa49eacf95ac96f82cc
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/rs16101782