Back to Search Start Over

Monitoring Plant Diversity to Support Agri-Environmental Schemes: Evaluating Statistical Models Informed by Satellite and Local Factors in Southern European Mountain Pastoral Systems

Authors :
Antonio T. Monteiro
Paulo Alves
Claudia Carvalho-Santos
Richard Lucas
Mario Cunha
Eduarda Marques da Costa
Francesco Fava
Source :
Diversity, Vol 14, Iss 1, p 8 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

The spatial monitoring of plant diversity in the endangered species-rich grasslands of European mountain pastoral systems is an important step for fairer and more efficient Agri-Environmental policy schemes supporting conservation. This study assessed the underlying support for a spatially explicit monitoring of plant species richness at parcel level (policy making scale) in Southern European mountain grasslands, with statistical models informed by Sentinel-2 satellite and environmental factors. Twenty-four grassland parcels were surveyed for species richness in the Peneda-Gerês National Park, northern Portugal. Using a multi-model inference approach, three competing hypotheses guided by the species-scaling theoretical framework were established: species–area (P1), species–energy (P2) and species–spectral heterogeneity (P3), each representing a candidate spatial pathway to predict species richness. To evaluate the statistical support of each spatial pathway, generalized linear models were fitted and model selection based on Akaike information criterion (AIC) was conducted. Later, the performance of the most supported spatial pathway(s) was assessed using a leave-one-out cross validation. A model guided by the species–energy hypothesis (P2) was the most parsimonious spatial pathway to monitor plant species richness in mountain grassland parcels (P2, AICc = 137.6, ∆AIC = 0.0, wi = 0.97). Species–area and species–spectral heterogeneity pathways (P1 and P3) were less statistically supported (ΔAICc values in the range 5.7–10.0). The underlying support of the species–energy spatial pathway was based on Sentinel-2 satellite data, namely on the near-infrared (NIR) green ratio in the spring season (NIR/Greenspring) and on its ratio of change between spring and summer (NIR/Greenchange). Both predictor variables related negatively to species richness. Grassland parcels with lower values of near-infrared (NIR) green ratio and lower seasonal amplitude presented higher species richness records. The leave-one-out cross validation indicated a moderate performance of the species–energy spatial pathway in predicting species richness in the grassland parcels covered by the dataset (R2 = 0.44, RMSE = 4.3 species, MAE = 3.5 species). Overall, a species–energy framework based on Sentinel 2 data resulted in a promising spatial pathway for the monitoring of species richness in mountain grassland parcels and for informing decision making on Agri-Environmental policy schemes. The near-infrared (NIR) green ratio and its change in time seems a relevant variable to deliver predictions for plant species richness and further research should be conducted on that.

Details

Language :
English
ISSN :
14242818
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Diversity
Publication Type :
Academic Journal
Accession number :
edsdoj.843b21e5b5874a24bf86250e519e3af5
Document Type :
article
Full Text :
https://doi.org/10.3390/d14010008